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I N F I L T R A T I O N  OF A S A L T  S O L U T I O N  I N T O  

A S W E L L I N G  S O I L  

V. I. Pen'kovskii UDC624.131.6 

The physicochemical  and hydraulic parameters  of soils are  largely dependent on the content of clay 
minera ls ,  which make up more  than half of all sediments in the ea r th ' s  crust .  The lattice surfaces  of the clay 
part icles bear negatively charged oxygen ions, and therefore  soils are  basically cat ion-exchange mater ia ls  
capable of taking up cations f rom an electrolyte  and exchanging equivalent amounts of positively charged ions. 
A dry clay soil on wetting by water  or  a solution swells and absorbs the water  and solutes. The cause of the 
swelling is hydration of the ions in the hydrophylic groups in the soil. The extent of the swelling is dependent 
on the hydrated radius of the ion and the exchange capacity of the so i l -absorbing  complex. The swelling is 
accompanied by coalescence of colloidal par t ic les ,  which leads to an increase  in the amount of relat ively im-  
mobile water  [1, 2] and a substantial  reduction in the fi l tration capacity of the soil. 

The converse  phenomenon is peptization or  part icle dispersion,  which is accompanied by a reduction in 
the amount of bound water  and improvement  in the permeabil i ty,  as is observed when an electrolyte infil trates 
into a soil containing f resh  water.  Experiments  in the field and in the labora tory  with soil sys tems  [3, 4] show 
that the balance between peptization and coalescence  may produce large reductions or  increases  in the perme-  
ability of a given specimen of natural soil. It is important  to consider  these phenomena in developing methods 
of calculating the wa te r - sa l t  conditions in soils during i r r igat ion and draining, as well as in r e s e a r c h  on the 
stability of earth dams and related problems. 

Here we consider  a model case of the infiltration of f resh  water  into a clay soil whose skeleton retains a 
cer tain amount of salt  solution with a given concentration.  

1. Formulation.  The theory of double e lectr ical  layers  implies that the concentrat ion C i in m o l e s / l i t e r  
of ion i in the solution surrounding the negatively charged surface  of a clay particle is [5] given by 

C~ = C~ exp [-- zie (~ - -  ~p~ 

where  z i is the valency of the ion, e is the electronic charge,  $ = ~(y) is the e lectr ical  potential, k is Boltz- 
o and r mann ' s  constant, T is absolute ~emperature,  C i are  the values of the equilibrium concentrat ion and elec-  

t r ica l  potential, respect ively ,  as measured far  f rom the surface ,  and y is a coordinate measured along the 
normal to the sur face  of the particle.  The solution in an e lementary volume at a cer ta in  distance y will be 
at tracted to the charged  surface  under the action of the electr ic  field with a force 

[ ~e (* -- *~ ~-~ NAe d* NAe ~ ziC ~ exp d~, 
dp = - -  2.~z~Ci t-y6- ~ dy dy 1000 kT 

i i 

where N A is Avogadro 's  number and the summation is taken over  each ion (z i > 0 for a cation and z i < 0 for an 
anion). After integration of this expression with respec t  to p f rom p0 to p and with respec t  to r f rom ~0 to $ we 
get the value of the excess p res su re  (swelling pressure)  Ap = p -  P0 acting near the surface  of a colloidal par-  
ticle: 

R r  - ( 1 . 1 )  A p -  i000 
i 
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where R = ~NA is the universal gas constant and p0 is the pressure far from the surface. Therefore, if the 

overall concentration N = EC i of the solution adjoining the surface of the clay particle is greater than the over- 
.~C .0 all concentration C = ~ i of the solution in the transit pores of the soil we have Ap > 0, and the resulting addi- 

tional pressure will increase the thickness of the solvate layer of liquid surrounding the particle, while the 

formation of relatively immobile solvate layers surrounding several particles simultaneously results in the 

coagulation. Conversely, in the case N < C (Ap < 0) the solvate layers are destroyed and the particles are dis- 

persed (colloid peptization). 

Accordingly we assume that the volume amount of solution 0 bound to the soil skeleton (in unit volume of 

physical space) may be represented to a first approximation as the linear function of the swelling pressure Ap. 

On the basis of (I.!) we write this assumption as 

0 = 0 ~ + ~ ( N -  C), (1.2) 

whe re  0 ~ is the vo lume  amount  of so lu t ion  bound to the so i l  unde r  s t a n d a r d  cond i t ions ,  w he r e  the s a l t  c o n c e n -  
t r a t i ons  in the mobi le  and i m m o b i l e  so lu t ions  a re  i den t i ca l ,  whi le  fi is an e x p e r i m e n t a l  cons t an t  dependent  on 
the m e c h a n i c a l  and m i n e r a l  compos i t i ons  of the so i l ,  and also on the ionic  compos i t i on  of the so lu t ion  and on 

t e m p e r a t u r e .  

To d e t e r m i n e  the dependence  of the f i l t r a t i on  coef f ic ien t  K on the amount  of bound so lu t ion  0 we use  the 

Siichter-Coseni theoretical f o r m u l a  [6] 

n (1.3) K ~ a m e ,  

w h e r e  m e is the effect ive  poros i ty  of the m e d i u m ,  a is a c e r t a i n  cons t an t  dependent  on the c h a r a c t e r i s t i c  d i a m -  
e t e r  of the pa r t i c l e s  and on the packing,  and n is a p a r a m e t e r  n u m e r i c a l l y  equal  to 3.3 {according to S l ieh ter )  
or  4.0 (accord ing  to Coseni)o With an ove ra l l  bulk w a t e r  con ten t  w, the ef fec t ive  po ros i ty  is m e = w - 0. We 
a s s u m e  that  we know the value  K = K 0 = a(m - 0~ n unde r  the condi t ions  of the s t a n d a r d  e x p e r i m e n t ,  whe re  m 
is the total  poros i ty  of the med ium.  Then s u b s t i t u t i o n  of a = K 0 ( m -  0~ - n  and me into (1.3) gives 

K ( w ,  O) = g o [(w --  O)/(m - -  0 ~ ],n, (1.4) 

which for 0 - 0 0 (fi = 0) and n = 3.5 coincides with Aver'yanov's formula for the filtration coefficient in an in- 
completely saturated nonswelling soil [7]. 

The following equations [7] constitute the basic system describing the simultaneous water and salt trans- 

port in the porous medium: Fick's law for the mass flux j of the solute 

] = - - D ( w ,  q ) o c / a x  + qC, 

and the g e n e r a l i z e d  f o r m  of D a r c y ' s  law for  the bulk r a t e  of i n f i l t r a t i o n  q of the so lu t ion  

q = - - K ( w ,  o ) (op /ax  - -  t )  

(p is the p r e s s u r e  in  the l iquid,  whi le  the x axis is v e r t i c a l  downwards ,  and we neg lec t  changes  in  the dens i ty  

and v i s c o s i t y  of the so lu t ion  due to the c o n c e n t r a t i o n ) ,  toge the r  wi th  the laws of c o n s e r v a t i o n  for  the so lu te  
and the so lven t  (water) r e s p e c t i v e l y :  

a] -~t aq Ow 
- -  a--T = [ ( w  - -  0 )  c + O N ] ,  - ax Ot ,) 

as wel l  as the equat ions  for  the k ine t ics  of the m a s s  t r a n s f e r  be tween the mob i l e  and bound so lu t ions :  

a(ON)/a t  ---- - -8 (q ,  O)(N - -  7C). 

The coef f i c ien t  of convec t ive  di f fus ion in a m e d i u m  with i n c o m p l e t e l y  s a t u r a t e d  pores  is D(w, q) = (w - 0)D 0 + 
/kq, whi le  D O is the coef f i c ien t  of m o l e c u l a r  d i f fus ion and k is the f i l t r a t i o n - d i s p e r s i o n  p a r a m e t e r ,  and the 
p a r a m e t e r s  of the  exchange .kinetics 7 -> 0, 6(q, 0) a re  dependent  on the p h y s i c o c h e m i c a l  p r o p e r t i e s  of the 
porous m e d i u m  and of the so lu t ion ,  all  of which  a r e  a s s u m e d  given along wi th  the r e l a t i o n s h i p  p = p(w) for  the 
a b s o r p t i v e  force  of the so i l  in r e l a t i o n  to w a t e r  conten t .  Equat ions  (1.2) and (1.4) c lose  the above s y s t e m  in 
the  s i m u l a t i o n  of mass  t r a n s f e r  in a swe l l ing  porous m e d i u m  con ta in ing  co l lo ida l  p a r t i c l e s .  

C o n s i d e r  a s e m i - i n f i n i t e  l a y e r  of so i l  i n i t i a l l y  con ta in ing  an i m m o b i l e  so lu t ion  of uni t  c o n c e n t r a t i o n ,  on 
which  is la id  a thin l a y e r  of f r e s h  wa te r .  We a s s u m e  that  the so lu t ion  p e n e t r a t e s  into the soi l  only u n d e r  the 
act ion of g rav i ty  and with comple t e  s a t u r a t i o n  of the pore  space  (w = m). We a lso  a s s u m e  that 6(q, 0) = a q  and 
y = D = 0 [8]. Then the f lush ing  of the so i l  is  d e s c r i b e d  by the s y s t e m  of equat ions  
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o = o~ + ~ ( ,v - c) ,  

- (1 .5 )  
O C  0 

o ( O N ) = - - a v N ,  - - v  o~ o~ . . . .  -bT- I(rn - -  O) C + 0N] 

wi th  bounda ry  cond i t ions  at  the s u r f a c e  of the  s o i l  and at  the  i n f i l t r a t i o n  b o u n d a r y ,  r e s p e c t i v e l y :  

x =  0: C = 0 ,  p = 0 ;  x =s (x ) :  N = I ,  p = 0 ,  (1.6) 

t o g e t h e r  wi th  a k i n e m a t i c  cond i t ion  of the f o r m  

[ m  - -  O ( s ,  "0 l d s / &  = v (1.7) 

and the i n i t i a l  cond i t ion  s (0) = 0, w h e r e  T = K0t , v = q/K0, and the func t ions  C(x,  r) and N(x, T) a r e  r e f e r r e d  to 
s o m e  c h a r a c t e r i s t i c  va lue  (here  the  i n i t i a l  c o n c e n t r a t i o n  of the s o i l  so lu t ion) .  

2. A p p r o x i m a t e  Solut ion .  The d i m e n s i o n l e s s  c o e f f i c i e n t  fl a p p e a r i n g  in the  f i r s t  equa t ion  of (1.5) is  d e -  
penden t  on the percaant con ten t  of c l a y  p a r t i c l e s  in the  s o i l  and does  not  exceed  the va lue  m -  0 ~ < 1 when C 
and N v a r y  in the  r ~ g e  (0, 1). We t ake  th is  coe f f i c i en t  as a s m a l l  p a r a m e t e r  and s e e k  the so lu t i on  as the  
a s y m p t o t i c  expans ions  

0 = 0 o +  ~ 0 1 + ~ : 0 ~ + . . . ,  p = p o +  ~Pl +[~2P~ + . . . .  

N = N O "@ ~N 1 + ~2N 2 "~- . . .: v = y 0 @ ~v 1 @ ~2v2 @ . . . .  (2.1) 
9 I C = C0 + ~Cl  + ~ C 2  + . . . .  s = so + ~s~ + ~ s 2 ~ - .  �9 . 

Subs t i t u t ion  of (2.1) into (1.5), the  bounda ry  cond i t ions  of (1.6), and the k i n e m a t i c  cond i t ion  of (1.7) w i th  
s u b s e q u e n t  equa t ing  of t e r m s  wi th  i d e n t i c a l  p o w e r s  of fi l e ads  to a s e r i e s  of l i n e a r  p r o b l e m s  fo r  the func t ions  
0i, Ni,  . . . .  s i ( i = 0 ,  1, 2 . . . .  ). 

The system of equations arising in the first stage is 

0 0 ~ -  0 0 ' 12 0 = - -  

ON o 
O~ 0"~ ~ v ~ 1 7 6  

t o g e t h e r  wi th  the  b o u n d a r y  cond i t ions  

OP o ds o 
Oz + t '  ( m - - 0 0 ) ~ = v  o(~), 

OC o OC o ON o 
- -  v0 ~ -= (m - -  0 o ) - W -  + 00 0r ' : 

x = 0 : C o = 0 ,  P o = 0 ;  x = s o ( r ) :  N o =  t ,  po = 0 ;  s(0) = 0 ,  

and s i m u l a t e s  the  f lu sh ing  of  a l a y e r  of so i l  wi thout  a l l o w a n c e  fo r  the  c l a y - p a r t i c l e  s w e l l i n g .  The so lu t i on  is 

0o = 0 ~ = const, vo ~ 1, Po ~- 0, s o = T/(m - -  0o) , (2.2) 

No = exp [ao(X - -  So) ], Co = ctx exp [ao(X - -  So) ] (no= a(m - -  0o)/0o). 

We ge t  an uncoup led  s y s t e m  of equa t ions  fo r  the  func t ions  wi th  index 1: 

@1 a ( N  O - -  Co) , d q  ds o 01 = No- -Co ,  v l =  ~,~ (m--Oo) -27- = vl  + 01 (so, "r)--~-, 

@(OoN1 + CINo) = --(z(voN1 + VlNo), 

- -  v ~  + v l ~  oc.oz ---- o'r~ [(m .-- 0o) C1 q 01Co + OoN~ -~- 01No] 

wi th  the b o u n d a r y  c o n d i t i o n s  

P l  = 0~ 

x = 0 :  C 1 = 0 ,  Pl = 0 ;  

0 N  0 
X = $ o ('r): N1 (So, 'r) = - -  s 1 - ' ~  (so, % 

sl(O) = 0 (a = n / ( m  - -  0o) ). 

We ge t  d i r e c t l y  f r o m  the  f i r s t  equa t ion  of (2.3) tha t  

01(03, T) = (~ - -  fi~3~) exp [c%(x - -  so)1. 

I n t e g r a t i o n  of  the  s e c o n d  equat ion  on the  b a s i s  of the  b o u n d a r y  cond i t i on  pl(0,  T) = 0 l e a d s  to 

(2.3) 
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1,2 ~ ~ , ,4 i - Z  
: / i / I  

,o i ', , L - l /  , i t / ~  

~ ; I~  ' 

[ / , /  ~:r  1 ~  ; i 

~7 4 0,8 r,2 ~,5 2,0 
~, days 

Fig.  1 

pl ( z ,  ~) - - -  v l z  - -  acz~% -~  { d  - -  1 + a a o  1 [(1 - -  ~) e~ - - 1 ] }  

(Zo --- ~oso(~), ~ = ~0z) 
T h e  funct ion vl is de r ived  f r o m  the condi t ion pl(s0, T) = 0 and takes the f o r m  

<,,,, [ no 'l - ~:<-l~ ( -  ~o) 7 

=- [ ,,, J " 

We in t roduce  the funct ion z~ = ~ 0 ( m -  00)sl(w) and subs t i tu te  the va lue  of 01(s0, T) f r o m  the third  equation 
of (2.3) and the ini t ial  condi t ion z 1 (0) = 0 to get  

z 0 

~ 0  - -  r 

Subst i tut ion of these  r e l a t ionsh ips  t r a n s f o r m s  the four th  equat ion in ( 2 . 3 )  and a c o r r e s p o n d i n g  boundary  

condi t ion to 

0A' I 
az"~ -}- N1 ----- e-%q~ (~, %), [ ---- Zo: N1 = - -  z l / ( m  - -  0o) 

2 l ~ - - v  1(z) expD. (q) ([, z) ~ -~-0 ( ---~.o~)exp(2[ - z )  

The solut ion to this is the funct ion 

['i ] N l = e - %  (p (~, z) dz - -  e~z 1 (~) (m - -  00) -1  . 

S i m i l a r l y ,  to d e t e r m i n e  Cj (~, z 0) we have the b o u n d a r y - v a l u e  p r o b l e m  

ac' 1 oc~ ~ (%, Zo), 
a~ F--g~% = o:ocp~ 

[ = 0 :  C z = O  

(~, (L z)= N, (~, z ) -  0o% ~--~ ~ ( 1 -  ~ ~)e'(~-')- ~v, (z)eL-.). 

The solut ion is wr i t t en  as 

~ C~ (~, zo) = ~ %_ (u, u + z,, - -  ,~) du. 
0 

The l a t t e r  t e r m s  in the expansions  of (2.1) can be de r ived  ana logous ly ,  a l though the re  a r e  c e r t a i n  dif f i -  
cul t ies  of computa t iona l  c h a r a c t e r .  

The sol id  and broken  l ines in Fig.  1 show c o r r e s p o n d i n g l y  the g raphs  fo r  vff) ( inf i l t rat ion rate)  and s(r)  
(washing front) as ca lcu la ted  fo r  va r ious  values  of fi us ing the f i r s t  two t e r m s  in the a sympto t i c  expans ions  of 
(2.1). The fol lowing ini t ial  va lues  w e r e  used:  K 0 = 0.2 m / d a y ,  0 ~ = 0.2, m = 0.4,  a = 0.4 m -1, a - 10; the 

6 7 7  



calculations show that the swelling substantially influences the infiltration into the clay soil. 
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G R O W T H  A N D  C O L L A P S E  OF V A P O R  B U B B L E S  IN 

B O I L I N G  L I Q U I D  

F. B. N a g i e v  and N. S. K h a b e e v  UDC 532.529 

A study is made of the dynamics and heat-mass exchange of vapor bubbles in water and cryogenic liquids 
under the action of an abrupt pressure change, which corresponds to bubble behavior in a shock wave, when the 
wave enters a bubble curtain. Behavio r under varying pressure is also studied. 

A system of basic equations describing the heat-mass exchange processes and dynamics of a spherical 
homobaric bubble in a liquid was presented in [1]. The equations of heat adflux, continuity, and state in spher- 
ical Euler coordinates (r, t) have the form 

[ au v Our ~ 1 O t OT,, "~ Pv dPv 
po[-  +v~ or ] +  d-r, 

ap,, 1 0 7i- + 7 ~ (r~p~ = 0, pc (t) = Bpo (r, t) T~ (r, t), 
............ (1) 

I Ou I Ou~'~ t O z OT z k 

vz = w~R2/r~, u, = c,T, ,  u~ --- r p, = const, 

where p is the density; T, temperature; p, pressure; v, velocity; u, specific internal energy; X, thermal con- 
ductivity coefficient; R, bubble radius; wl, mass velocity of liquid on bubble surface; B, gas constant; Cv, 
specific heat of vapor at constant volume. The subscripts l and v refer to liquid and vapor parameters, re- 
spectively, while the subscript 0 indicates parameters in the unperturbed state. 

The boundary conditions for the heat adflux equations have the form 

r = O, aT~/ar = O, 

r = co, T, = To, (2) 

aTz X OT, r=R(t)~ )~z~--  o ~ = ] l ,  T,=T~=T,(Po), 

where  T s (Pv) is the sa tura t ion  t empe ra tu r e ;  j is the r a t e  of phase  convers ion  per  unit sur face ;  l is the latent  
heat  of evaporat ion.  The las t  condition defines the so -ca l l ed  quas i - equ i l ib r ium approximat ion.  The bubble 
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