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INFILTRATION OF A SALT SOLUTION INTO
A SWELLING SOIL

V. I. Pen'kovskii UDC 624.131.6

The physicochemical and hydraulic parameters of soils are largely dependent on the content of clay
minerals, which make up more than half of all sediments in the earth's crust. The lattice surfaces of the clay
particles bear negatively charged oxygen ions, and therefore soils are basically cation-exchange materials
capable of taking up cations from an electrolyte and exchanging equivalent amounts of positively charged ions.
A dry clay soil on wetting by water or a solution swells and absorbs the water and solutes, The cause of the
swelling is hydration of the ions in the hydrophylic groups in the soil. The extent of the swelling is dependent
on the hydrated radius of the ion and the exchange capacity of the soil-absorbing complex. The swelling is
accompanied by coalescence of colloidal particles, which leads to an increase in the amount of relatively im-
mobile water [1, 2] and a substantial reduction in the filtration capacity of the soil.

The converse phenomenon is peptization or particle dispersion, which is accompanied by a reduction in
the amount of bound water and improvement in the permeability, as is observed when an electrolyte infiltrates
into a soil containing fresh water. Experiments in the field and in the laboratory with soil systems [3, 4] show
that the balance between peptization and coalescence may produce large reductions or increases in the perme-
ability of a given specimen of natural soil. It is important to consider these phenomena in developing methods
of calculating the water-salt conditions in soils during irrigation and draining, as well as in research on the
stability of earth dams and related problems,

Here we consider a model case of the infiltration of fresh water into a clay soil whose skeleton retains a
certain amount of salt solution with a given concentration.

1. Formulation. The theory of double electrical layers implies that the concentration C; in moles /liter
of ion i in the solution surrounding the negatively charged surface of a clay particle is [5] given by

Ci = C{exp[— zie (b — V)/ET],

where z; is the valency of the ion, e is the electromc charge, ¥ = ¢(y) is the electrical potential, k is Boltz-
mann's constant, T is absolute temperature, C0 and y” are the values of the equilibrium concentration and elec-
trical potential, respectively, as measured far from the surface, and y is a coordinate measured along the
normal to the surface of the particle. The solution in an elementary volume at a certain distance y will be
attracted to the charged surface under the action of the electric field with a force

e Nye \ [ ( w")}
Zz Ci-igon d_/ = Toc0" Ezc exp dp,

where N, is Avogadro's number and the summation is taken over each ion (z; > 0 for a cation and z; < 0 for an
anion). After integration of this expression with respect to p from p’top and with respect to ¥ from ¥ to y we
get the value of the excess pressure (swelling pressure) Ap = p — p, acting near the surface of a colloidal par-
ticle:

Ap = 1000 S‘ (Cz - C?) ’ (1.1)

i
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where R = kN is the universal gas constant and p’ is the pressure far from the surface, Therefore, if the
overall concentration N = £C; of the solution adjoining the surface of the clay particle is greater than the over-
all concentration C = zc}f of the solution in the transit pores of the soil we have Ap > 0, and the resulting addi-
tional pressure will increase the thickness of the solvate layer of liquid surrounding the particle, while the
formation of relatively immobile solvate layers surrounding several particles simultaneously results in the
coagulation. Conversely, in the case N < C{Ap < 0) the solvate layers are destroyed and the particles are dis-
persed (colloid peptization).

Accordingly we assume that the volume amount of solution 6 bound to the soil skeleton (in unit volume of
physical space) may be represented to a first approximation as the linear function of the swelling pressure Ap,
On the basis of (1.1) we write this assumption as

6 =08+ BV — C), (1.2)

where 6 is the volume amount of sclution bound to the soil under standard conditions, where the salt concen-
trations in the mobile and immobile solutions are identical, while 8 is an experimental constant dependent on
the mechanical and mineral compositions of the soil, and alsc on the ionic composition of the solution and on
temperature,

To determine the dependence of the filtration coefficient K on the amount of bound solution 6 we use the
Slichter—Coseni theoretical formula [6]

K = am?, 1.3)

where mg, is the effective porosity of the medium, a is a certain constant dependent on the characteristic diam-
eter of the particles and on the packing, and n is a parameter numerically equal to 3.3 (according to Slichter)
or 4.0 (according to Coseni). With an overall bulk water content w, the effective porosity is mge = w — 6. We
assume that we know the value K = K; = a(m — %" under the conditions of the standard experiment, where m

is the total porosity of the medium, Then substitution of @ = Ky(m — 6°~1 and me into (1.3) gives

KE(w, 0) = K,[(w — 0)/(m — 0%, (1.4)

which for 9 = 8% (8 = 0) and n = 3.5 coincides with Aver'yanov's formula for the filtration coefficient in an in-
compietely saturated nonswelling soil [7].

The foliowing equations {7] constitute the basic system describing the simultaneous water and salt trans-
port in the porous medium: Fick's law for the mass flux j of the solute

j = —D(w, 9)0C/dz + qC,
and the generalized form of Darcy's law for the bulk rate of infiltration q of the solution
g = —K(w, 8)(8p/dz — 1)

(p is the pressure in the liquid, while the x axis is vertical downwards, and we neglect changes in the density
and viscosity of the solution due to the concentration), together with the laws of conservation for the solute
and the solvent (water) respectively:

aj 8 9 ow
ox — 9t ?

— = = - l(w —8)C + BN,

as well as the equations for the kinetics of the mass transfer between the mobile and bound solutions:
ONY/ot = —B(g, BYNV — yC).

The coefficient of convective diffusion in a medium with incompletely saturated pores is D(w, q) = (w — 6)Dy +
Mg, while Dy is the coefficient of molecular diffusion and A is the filtration-dispersion parameter, and the
parameters of the exchange kinetics v = 0, 6(g, 0) are dependent on the physicochemical properties of the
porous medium and of the solution, ail of which are assumed given along with the relationship p = p@w) for the
absorptive force of the soil in relation to water content, Equations (1.2) and (1.4) close the above system in
the simulation of mass transfer in a swelling porous medium containing colloidal particles.

Consider a semi-infinite layer of soil initially containing an immobile solution of unit concentration, on
which is laid a thin layer of fresh water. We assume that the solution penetrates into the soil only under the
action of gravity and with complete saturation of the pore space tw = m), We also assume that 6(q, 6) = aq and
v =D =0 [8]. Then the flushing of the soil is described by the system of equations



0 =00 4+p(¥ —0),
u:v(r):——[i— —F (N—C)]n(—%il—- )

—@°

9 ac a .5
—7 (8¥) = —avh, —v?}—:—&—[(m—ﬂ)C—%GNl
with boundary conditions at the surface of the soil and at the infiltration boundary, respectively:
z=0C=0,p=0; z=s0t): N=1, p=20, (1.6)
together with a kinematic condition of the form
[m — 0(s, ©)lds/dr = v 1.7)

and the initial condition s(0) = 0, where 7 = Kt, v = g/K;, and the functions C(x, 7) and N(x, 7) are referred to
some characteristic value (here the initial concentration of the soil solution).

2. Approximate Solution. The dimensionless coefficient B appearing in the first equation of (1.5) is de-
pendent on the pergent content of clay particles in the soil and does not exceed the value m — 6° < 1 when C
and N vary in the range (0, 1). We take this coefficient as a small parameter and seek the solution as the
asymptotic expansions

0 = 6y + PO, + B*0o+. . ., p = pp + Bpy + By + . . -,
N =Ny+ BN, + BN, -+ ..., v=uy+ Pv; + B, + ..., 2.1)
C=Cy-+PBCy + P2Cy . . ., s =55 + Psy -+ P2t . ..

Substitution of 2,1) into (1.5), the boundary conditions of (1.6), and the kinematic condition of (1.7) with
subsequent equating of terms with identical powers of 3 leads to a series of linear problems for the functions
6is Njs e o .»,8;1=0,1, 2,...).

The system of equations arising in the first stage is

p, ds,
BOEOO, U[):—Tz"{—'l, (m——eo)—d?—:vo(r),
aN ac ac aN,
0 0
e0 T avOND’ — Yy 2z (m - BO) a;to T 60 a.co ’

together with the boundary conditions
z2=0:C, =0, pp=10; z=s4t): Ny =1, py = 0; s(0) =0,
and simulates the flushing of a layer of soil without allowance for the clay-particle swelling, The solution is

8o = 0° = comst, vy, =1, po=0, s, = /(i — G),

. (2.2)
Ny =exp oy — s)1, Cp = axexp loglx — so) ] (ctg= alm — 8,)/6,).
We get an uncoupled system of equations for the functions with index 1:
ap ; ds ds
0, = Nog—Co, U1=— (—VJ‘:— —a(Nyg—Co), (m—8y) _d71 = v3 -+ 0 (8o, T)—Jf‘,
e (04 - CuN ) = — il Ny -+ v, V), 2.3)
ac ac,

— Uy

a ) t T
6.7:1 41y s = o [(m -— 00) Cl -+ OICO - GoNl - 9117\ 01
with the boundary conditions
z2=0:C,=0,p =0
aN,
x == 8y (T): ‘)Vl (501 T) =% Bz (SDV, T), Py = Oa

5:0) = 0 (a = n/{m — B,)).

We get directly from the first equation of (2.3) that
Oy(x, 1) = (1 — az) exp [z — s0) .

Integration of the second equation on the basis of the boundary condition p((0, 7) = 0 leads to
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v.m/fday; 5, ™

P12, ¥) = — vyz — awy e of — 1+ o [(1 — E) o8 — 1))

(2o = 08y(t), & = aqz).
The function v, is derived from the condition p((sy, 7) = 0 and takes the form

o {8, 1 —exp(—zy)
vy (29) = " __30‘ {Tn' - Z .

We introduce the function z; = oy(m — 6y)s;(r) and substitute the value of 6;(sy, 7) from the third equation
of (2.3) and the initial condition z;(0) = 0 to get

a@d=§[;§§§%;+vmnjda
(3

Substitution of these relationships transforms the fourth equation in (2.3) and a corresponding boundary
. condition to

IN 1

+ Ny=eT09E 20), E=2 Ny=—35/m—28)

azo

(‘P (£ 2) = gz— (1 - -go‘ E) exp (28 — z) — vy (z) exp E).

0
The solution to this is the function
Z9
N1=e_zo[§(9 (&, ) dz — €5, (§) (m — eo)—l}
|3

Similarly, to determine C;(, z;,) we have the boundary-value problem

ac,  oc @
—6_§1-+ "6701“ = —&;(Pl (& zo)
E=0: (=0
({pl (Ev z) =N, (E3 z) — Gizf} 3 (i - EO:‘ E) e2E-2) — Evy (2) eg-—z).

The solution is written as

Cr G zp) = —

©

(P]_(u, u 'l" Zy— E) du.

<o
@ eyt

The latter terms in the expansions of (2.1) can be derived analogously, although there are certain diffi-
culties of computational character.,

The solid and broken lines in Fig, 1 show correspondingly the graphs for v(r) (infiltration rate) and s(r)
(washing front) as calculated for various values of 8 using the first two terms in the asymptotic expansions of
©.1). The following initial values were used: K, = 0.2 m/day, 6°=0.2, m =0.4, @ = 0.4 m~!, a = 10; the
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calculations show that the swelling substantially influences the infiltration into the clay soil.
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B

GROWTH AND COLLAPSE OF VAPOR BUBBLES IN
BOILING LIQUID

F. B, Nagiev and N. 8. Khabeev UDC 532.529

A study is made of the dynamics and heat-mass exchange of vapor bubbles in water and cryogenic liquids
under the action of an abrupt pressure change, which corresponds to bubble behavior in a shock wave, when the
wave enters a bubble curtain, Behavior under varying pressure is also studied.

A system of basic equations describing the heat-mass exchange processes and dynamics of a spherical
homobaric bubble in a liquid was presented in [1]. The equations of heat adflux, continuity, and statein spher-
ical Euler coordinates (r, t) have the form

du ou 1 @ aT p, dp
oo+ Ge) = Frar (o )+ 55
[
B () =0, po(®) = Beo(r, D To (),
r - -~

ou, | w4 @ aT,
. A 2
p’('at_'*'v‘?r“)_ 2 or (;“r a )

v = w R, wy =Ty, u, = cyT,, py = const,

where p is the density; T, temperature; p, pressure; v, velocity; u, specific internal energy; A, thermal con~
ductivity coefficient; R, bubble radius; w;, mass velocity of liquid on bubble surface; B, gas constant; cy,
specific heat of vapor at constant volume. The subscripts / and v refer to liquid and vapor parameters, re-
spectively, while the subscript 0 indicates parameters in the unperturbed state,

The boundary conditions for the heat adflux ‘equations have the form

r =0, aT,/or =0,
r=oo, Iy =T, {2)

ar orT .
T=R(t)z }"l-arl"—xn_a%=]lz Tvalsz(po)v

where Tg(py) is the saturation temperature; j is the rate of phase conversion per unit surface; ! is the latent
heat of evaporation. The last condition defines the so-~called quasi-equilibrium approximation, The bubble
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